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Abstract. Active learning selects the most informative samples from
the unlabelled dataset to annotate in the context of a limited anno-
tation budget. While numerous methods have been proposed for subse-
quent sample selection based on an initialized model, scant attention has
been paid to the indispensable phase of active learning: selecting sam-
ples for model cold-start initialization. Most of the previous studies resort
to random sampling or naive clustering. However, random sampling is
prone to fluctuation, and naive clustering suffers from convergence speed,
particularly when dealing with high-dimensional data such as imaging
data. In this work, we propose to integrate foundation models with clus-
tering methods to select samples for cold-start active learning initial-
ization. Foundation models refer to those trained on massive datasets
by the self-supervised paradigm and capable of generating informative
and compacted embeddings for various downstream tasks. Leveraging
these embeddings to replace raw features such as pixel values, clustering
quickly converges and identifies better initial samples. For a compre-
hensive comparison, we included a classic ImageNet-supervised model
to acquire embeddings. Experiments on two clinical tasks of image clas-
sification and segmentation demonstrated that foundation model-based
clustering efficiently pinpointed informative initial samples, leading to
models showcasing enhanced performance than the baseline methods.
We envisage that this study provides an effective paradigm for future
cold-start active learning.
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1 Introduction

Based on large-scale samples as well as high-quality annotations, deep learn-
ing (DL) has emerged as the primary choice for dealing with high-dimensional
medical images [3]. Although the data itself is no longer a challenge with the
increasing adoption of electronic health records [34], the gold-standard annota-
tion by human experts is time-consuming and therefore becomes a bottleneck for
developing DL for healthcare. Active learning is proposed to alleviate this issue
and aims to select the most informative samples from the unlabelled dataset
to annotate for model training [32] and various algorithms have been proposed,
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Fig. 1: Schematic comparison between the proposed and two baseline initializa-
tion approaches for cold-start active learning. The green blocks depict the shared
modules while the blue blocks highlight the difference.

including uncertainty-based strategies, representative-based approaches, and hy-
brid methods [I0]. However, most of these algorithms are designed for sample
selection based on an initialized model, with scant attention given to the in-
dispensable phase of active learning: selecting samples for cold-start model ini-
tialization. Conventionally, random sampling [2] and clustering [11] are used
for initializing cold-start active learning. However, random sampling is prone to
fluctuation, and clustering encounters convergence challenges, especially when
processing high-dimensional raw inputs such as pixel values [7]. To differentiate
clustering based on distinct input features, we refer to clustering that utilizes
raw inputs as 'naive clustering’. Apart from random sampling and naive clus-
tering, prior studies have investigated weakly supervised methods for cold-start
active learning initialization by using an auxiliary model for weak labels to iden-
tify initial samples for the target task [33J40]. In this study, weakly supervised
initialization methods are not included due to the challenges associated with the
weak label definition [33].

In this study, we propose to integrate foundation models with clustering to
circumvent the fluctuation inherent in random sampling and address the con-
vergence challenges encountered by naive clustering with high-dimensional in-
puts. Foundation models refer to those trained on massive datasets by the self-
supervised paradigm and capable of generating low-dimensional yet information-
rich embeddings, which are natural alternatives to original inputs of pixel values
for clustering [22]. Then samples closest to cluster medoids are selected as initial
informative samples for model initialization. Our experiments, conducted on two
clinical tasks of pneumothorax classification and segmentation, revealed that the
initial samples selected by foundation model-based clustering exhibited superior
performance compared to the baseline methods in both initialization and sub-
sequent learning of cold-start active learning. We envisage that the proposed
method provides an effective paradigm for future cold-start active learning.

2 Methods

To harness the power of foundation models in improving cold-start active learn-
ing efficacy, we propose to integrate embeddings by foundation models with
clustering methods for cold-start active learning initialization. In this section,
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we first present two baseline methods for initialization: random sampling and
naive clustering. Then we introduce a subsequent learning strategy based on
uncertainty to evaluate the impact of initialization on the the entire iteration
cycle of cold-start active learning. Finally, we detail the foundation model-based
clustering for initialization.

2.1 Baseline Initialization Methods

Traditional cold-start active learning applies either random sampling [2] or naive
clustering [11] for initialization. Subplots a and b in Figure [1] depict the general
steps of these two baseline methods. Random sampling randomly selects the
pre-defined number of samples from the unlabelled dataset. Under a large sam-
pling budget, random sampling selects diverse and representative samples while
it suffers from instability when allocated a limited budget [25]. To ensure com-
parability across different budgets, we condition that the sample set chosen by
a low budget remains a subset of the sample set selected by a higher budget.

The other widely used initialization method in cold-start active learning is
naive clustering [I1], which partitions unlabelled samples into distinct clusters
and selects samples closest to each cluster’s center as the representative sample
to comprise the samples for initialization. Whereas, when dealing with high-
dimensional data such as images, the naive clustering method is prone to con-
vergence difficulty [7]. Like random sampling, a strategy is designed to ensure the
comparability of sample selection across various budgets. For a specific budget,
clustering is implemented with increasing cluster numbers (i.e. cluster numbers
2,3,4,5, ...), and the samples closest to cluster medoids are aggregated until the
budget is fulfilled. K-means [20] is the default clustering method in this study.

To illustrate the influence of initialization on the entire iteration cycle of
cold-start active learning, subsequent learning is conducted based on the clas-
sic uncertainty method. In a classification task, the most uncertain samples are
those with predicted probabilities around the binarization threshold [23]. In a
segmentation task, where the model outputs a probability vector for each pixel’s
likelihood of being included in the final segmentation area, uncertainty is com-
puted as the mean uncertainty across all pixels [35].

2.2 Foundation Model-based Initialization

As shown in Subplot ¢ in Figure[l], the key distinction between foundation model-
based clustering and naive clustering lies in the input features. Foundation mod-
els are capable of generating low-dimensional embeddings to mitigate the conver-
gence difficulty caused by the raw pixel values in the process of clustering [22JT3].
In this study, we explore three foundation models: TorchXRayVision (TXRV)
[6], CXR Foundation (CXRF) [28], and REMEDIS [I], which have proven to be
effective in various downstream tasks [30[26/17]. TXRV is developed on 13 pub-
licly available chest X-ray datasets with 728,004 thoracic disease-positive sam-
ples. CXRF is trained on 821,544 chest radiographs from India and the United
States using a supervised contrastive approach. REMEDIS coveres five medical
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imaging domains: dermatology, mammography, digital pathology, fundus imag-
ing, and chest radiographs through contrastive self-supervised learning. Through
extensive training on large-scale datasets, these foundation models exhibit the
capability to generate informative and condensed embeddings, serving as effec-
tive inputs for clustering. For TXRVE| and REMEDIS EL we extract embeddings
from the last layer before the classification head. For CXRF, the concrete ar-
chitecture is not publicly accessible and the embeddings are acquired from the
granted online interface El Besides, we extract embeddings from the ImageNet-
supervised DenseNet-121 [I2] as a baseline to investigate whether the embed-
dings from the latest foundation models could surpass those from a previous
canonical model. After model initialization, the uncertainty-based subsequent
learning is implemented as the baseline initialization.

3 Experiments

We demonstrated the effectiveness of foundation model-based clustering for cold-
start active learning initialization using the real-world dataset of ChestX-Det
[19]. The ChestX-Det dataset consists of 611 healthy images and 189 pneumothorax-
positive images. Apart from the binary labels of pneumothorax, each positive
sample contains pixel-level annotations of lesion areas. Therefore, we conducted
two tasks of pneumothorax classification and pneumothorax segmentation to
present the superiority and generalizability of foundation model-based cluster-
ing. For pneumothorax classification, We randomly split the whole dataset into
three parts at 70: 10: 20 for training set, validation set, and test set. For pneu-
mothorax segmentation, the pneumothorax-negative samples from the previous
sets were excluded and the positive samples were retained. For each initialization
method in either classification or segmentation task, it selected samples from the
training set under different budgets of 20, 40, 60, 80, and 100. Then the selected
samples would be supplemented with annotations for model initialization while
the other samples remained unlabeled. To further illustrate the impact of foun-
dation model-based initialization on the complete iteration cycle of cold-start
active learning, we applied the uncertainty method for subsequent learning of
the model initialized by 20 samples. Throughout each iteration of subsequent
learning, a budget of 20 samples was allocated for model updates.

For pneumothorax classification, we implemented the classifier with a VGG-
11 model [29]. This choice was motivated by the previous study that in limited
training data settings, neural networks with a lightweight architecture demon-
strated comparable or even superior performance to a complex one [BI21]. Fol-
lowing the training settings in a previous study [I5], we used the Stochastic
Gradient Descent (SGD) [27] optimizer with an initial learning rate of le-3 and
a momentum of 0.9. Model training was conducted in batches of 10 images, using
weighted cross-entropy as the loss function to counterbalance the predominance

! https://github.com/mlmed /torchxrayvision
2 https://github.com/google-research /medical-ai-research-foundations
3 https://github.com/Google-Health /imaging-research /tree/master /cxr-foundation
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of negative samples [37]. The training was set as 100 epochs with a scheduler to
halve the current learning rate if no improvement was observed on the validation
set over 10 consecutive epochs. After the training, the classifier’s performance
was evaluated on the test set. Considering the data imbalance, we applied the
area under the precision recall curve (AUPRC) and F1 Score (F1) to evaluate the
classifiers trained on samples selected by different initialization methods [I6I31].
Higher AUPRC and F1 values indicate better performance. For each metric,
standard errors (SE) were calculated using the nonparametric bootstrap of 100
times [9)].

For pneumothorax segmentation, we developed the segmenter based on U-Net
architecture [24] with a backbone of VGG-11 [29]. Except for maintaining the
initial learning rate at le-2 and utilizing the Dice Similarity Coefficient (DSC)
[18] as the loss function[8], all other training settings remained consistent with
those employed in the classification task. After the training, the segmenter’s
performance was evaluated on the test set. Similar to a prior study [39], we ap-
plied DSC and Hausdorff Distance (HD) [14] to evaluate the segmenters. Higher
DSC values indicate better performance, while lower HD values indicate better
results. SE for each metric was computed using the nonparametric bootstrap of
100 times [9]. To ensure experiment reproducibility, the random seeds were set
to 2024 and the code is available at GitHub [l

4 Results

This section presents the test results of the classifier and segmenter initialized
by samples from different methods, accompanied by the respective SE enclosed
within parentheses. Table [I] showed the classification performance of VGG-11
developed on samples selected by different initialization methods. In terms of
AUPRC, CXRF-based clustering significantly outperformed baseline methods
and other foundation model-based clustering methods, showcasing the best per-
formance in budgets of 40, 80, and 100. At budget levels of 20 and 60, the highest
AUPRC values were attained by TXRV-based clustering and ImageNet-based
clustering, respectively. Regarding F'1 scores, both ImageNet-based clustering
and CXRF-based clustering achieved the highest performance in two out of five
scenarios. Assessed by AUPRC or F1, REMEDIS-based clustering showed in-
ferior performance compared to at least one of the baseline methods in four
out of five scenarios, underscoring the disparity in foundation models’ ability
to generate informative embeddings for pneumothorax classifier initialization.
Meanwhile, random sampling remained a powerful method, particularly evident
in relatively high budgets of 60, 80, and 100 samples, securing the second-highest
ranking in terms of AUPRC while it also presented the highest instability across
all scenarios and evaluation metrics.

Utilizing the classifier initialized by 20 samples, we employed the uncertainty
method for the subsequent active learning. In each iteration of the subsequent

! https://github.com/Han-Yuan-Med/foundation-model
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Table 1: Classification performance of VGG-11 trained on samples selected by
different initialization methods. The evaluation metrics accompanied by their
respective SE on the test set are presented. Higher AUPRC or F1 values indicate
better performance
Initialization Budget Method AUPRC F1

Random Sampling  0.389 (0.094) 0.447 (0.100)

Naive  0.313 (0.056) 0.390 (0.051)
ImageNet 0.545 (0.076) 0.482 (0.050)
)

20 samples Clustering TXRV  0.557 (0.082) 0.524 (0.071
REMEDIS 0.420 (0.068) 0.412 (0.047)
CXRF  0.506 (0.083) 0.554 (0.059)
Random Sampling 0.517 (0.113) 0.508 (0.071)
Naive  0.386 (0.061) 0.462 (0.052)
10 samples ImageNet 0.507 (0.093) 0.585 (0.052)
Clustering TXRV  0.617 (0.091) 0.608 (0.047)
REMEDIS 0.371 (0.062) 0.463 (0.061)
CXRF  0.640 (0.071) 0.536 (0.064)
Random Sampling  0.585 (0.098) 0.554 (0.080)
Naive  0.513 (0.083) 0.538 (0.053)
60 samples ImageNet 0.658 (0.089) 0.620 (0.053)
Clustering TXRV  0.532 (0.080) 0.585 (0.045)
REMEDIS 0.524 (0.079) 0.529 (0.054)
CXRF  0.624 (0.079) 0.566 (0.058)
Random Sampling _ 0.649 (0.106) 0.596 (0.0683)
Naive  0.553 (0.082) 0.589 (0.057)
S0 samples ImageNet 0.660 (0.079) 0.607 (0.049)
Clustering TXRV  0.522 (0.077) 0.512 (0.064)

REMEDIS 0.572 (0.075) 0.574 (0.066)

CXRF  0.750 (0.061) 0.675 (0.056)

Random Sampling  0.649 (0.091) 0.602 (0.063)
Naive  0.592 (0.076) 0.582 (0.049)

ImageNet 0.721 (0.082) 0.707 (0.052)
Clustering TXRV  0.646 (0.076) 0.598 (0.050)
REMEDIS 0.625 (0.071) 0.659 (0.058)

CXRF  0.762 (0.064) 0.621 (0.052)

100 samples

active learning, 20 predominantly uncertain samples were annotated from the un-
labeled set and combined with the previously labeled samples for model updates.
In the subsequent learning stage, regarding AUPRC, both classifiers initialized
by CXRF-based and TXRV-based clustering exhibited optimal performance in
two out of five scenarios. However, when evaluated by F1, ImageNet-based clus-
tering yielded the best model in three out of five scenarios and in the remaining
two scenarios, CXRF-based and TXRV-based clustering produced the best mod-
els.

Table [3| displays the segmentation performance of U-Net with VGG-11 back-
bone developed on samples chosen by different initialization methods. In terms
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Table 2: Classification performance of initialized VGG-11 trained by the
uncertainty-based subsequent learning (Budget: 20 samples in each iteration).
The evaluation metrics accompanied by their respective SE on the test set are
presented. Higher AUPRC or F1 values indicate better performance

Subsequent Budget Method AUPRC F1
Random sampling  0.501 (0.115) 0.484 (0.103)
Naive 0.400 (0.071) 0.448 (0.044)
90 samples ImageNet 0.557 (0.078) 0.548 (0.049)
Clustering TXRV  0.500 (0.070) 0.577 (0.057)
REMEDIS 0.496 (0.081) 0.526 (0.055)
CXRF  0.631 (0.066) 0.579 (0.057)
Random sampling  0.562 (0.097) 0.559 (0.090)
Naive  0.560 (0.077) 0.580 (0.054)
40 samples ImageNet 0.714 (0.064) 0.646 (0.064)
Clustering TXRV  0.619 (0.077) 0.595 (0.055)
REMEDIS 0.608 (0.072) 0.543 (0.070)
CXRF  0.722 (0.063) 0.620 (0.051)
Random sampling  0.660 (0.092) 0.630 (0.071)
Naive  0.485 (0.070) 0.561 (0.047)
60 samples ImageNet 0.697 (0.079) 0.659 (0.062)
Clustering TXRV  0.735 (0.061) 0.594 (0.065)
REMEDIS 0.589 (0.075) 0.574 (0.059)
CXRF  0.727 (0.074)  0.639 (0.048)
Random sampling  0.640 (0.111) _0.578 (0.099)
Naive  0.544 (0.076) 0.511 (0.059)
D ImageNet 0.808 (0.053) 0.699 (0.049)
Clustering TXRV  0.765 (0.065) 0.688 (0.054)
REMEDIS 0.476 (0.080) 0.489 (0.058)
CXRF  0.768 (0.056) 0.694 (0.059)
Random sampling  0.696 (0.106) 0.624 (0.083)
Naive  0.566 (0.087) 0.450 (0.061)

ImageNet 0.691 (0.053) 0.598 (0.060)
Clustering TXRV  0.771 (0.059) 0.690 (0.056)
REMEDIS 0.739 (0.065) 0.576 (0.055)

CXRF  0.771 (0.069) 0.685 (0.050)

100 samples

of DSC, TXRV-based clustering attained the highest performance in three out of
five scenarios and REMEDIS-based clustering achieved the best performance in
the other two scenarios. Measured by HD, TXRV, REMEDIS, and CXRF-based
clustering achieved the best performance in at least one scenario. Consistent
with the classification task, random sampling showed the highest SE of DSC in
all scenarios. Nevertheless, it only achieved the second-highest DSC or HD in
one scenario, which was not comparable to its success in the classification task.

In the subsequent learning stage of pneumothorax segmentation, the seg-
menter initialized by TXRV-based clustering achieved the highest DSC in three
out of five scenarios, while the segmenter initialized by REMEDIS-based clus-
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Table 3: Segmentation performance of U-Net with VGG-11 backbone trained
on samples selected by different initialization methods. The evaluation metrics
accompanied by their respective SE on the test set are presented. Higher DSC
or lower HD values indicate better performance.
Initialization Budget Method DSC HD
Random Sampling  0.161 (0.051) 4.976 (0.124)
Naive  0.032 (0.004) 13.134 (0.111)
ImageNet 0.141 (0.031) 4.267 (0.232)

20 samples oy tering TXRV ~ 0.244 (0.031) 4.607 (0.228)
REMEDIS 0.120 (0.024) 7.143 (0.432)

CXRF  0.109 (0.022) 5.762 (0.280)

Random Sampling  0.265 (0.052) 4.497 (0.098)

Naive  0.275 (0.038) 4.624 (0.199)

10 samples ImageNet 0.207 (0.038) 4.661 (0.189)
Clustering TXRV  0.291 (0.042) 3.961 (0.201)

REMEDIS 0.278 (0.047) 3.956 (0.216)

CXRF  0.201 (0.047) 4.309 (0.174)

Random Sampling  0.290 (0.046) 4.683 (0.098)

Naive  0.384 (0.034) 4.188 (0.173)

60 samples ImageNet 0.244 (0.041) 4.447 (0.187)
Clustering TXRV  0.398 (0.038) 4.908 (0.226)

REMEDIS 0.297 (0.041) 4.563 (0.174)

CXRF  0.246 (0.039) 4.016 (0.206)

Random Sampling  0.330 (0.057) 4.285 (0.111)

Naive  0.296 (0.047) 4.287 (0.197)

D ImageNet 0.306 (0.036) 4.759 (0.195)

Clustering TXRV  0.340 (0.048) 3.818 (0.198)
REMEDIS 0.392 (0.040) 3.795 (0.174)

CXRF  0.327 (0.043) 4.032 (0.209)

Random Sampling  0.353 (0.051) 4.525 (0.085)
Naive  0.375 (0.041) 4.286 (0.169)

ImageNet 0.379 (0.033) 4.518 (0.157)

Clustering TXRV  0.381 (0.040) 4.003 (0.220)
REMEDIS 0.392 (0.040) 4.836 (0.201)

CXRF  0.364 (0.047) 4.046 (0.182)

100 samples

tering excelled in the remaining two scenarios. Regarding HD, the segmenter
initialized by REMEDIS-based clustering obtained the two best values, while
the remaining three best values were achieved by the segmenter initialized by
ImageNet, TXRV, and CXRF-based clustering, respectively.

5 Discussion

This study presents an effective method for cold-start active learning initializa-
tion by integrating foundation models with clustering. Leveraging the informa-
tive embeddings generated by foundation models, the clustering selected better



Foundation Model-Based Clustering For Cold-Start Active Learning 9

Table 4: Segmentation performance of initialized U-Net with VGG-11 backbone
trained by the uncertainty-based subsequent learning (Budget: 20 samples in
each iteration). The evaluation metrics accompanied by their respective SE on
the test set are presented. Higher DSC or lower HD values indicate better per-
formance.

Subsequent Budget Method AUPRC F1

Random sampling _ 0.270 (0.061)  4.639 (0.527)

Naive 0.225 (0.042) 4.364 (0.172)

20 samples ImageNet 0.281 (0.048) 4.364 (0.180)
Clustering TXRV  0.284 (0.039) 4.693 (0.239)

REMEDIS 0.241 (0.027) 5.214 (0.234)

CXRF  0.248 (0.042) 3.922 (0.184)

Random sampling  0.303 (0.053) 4.458 (0.374)

Naive 0.312 (0.040) 4.326 (0.208)

40 samples ImageNet 0.280 (0.049) 4.051 (0.202)
Clustering TXRV  0.305 (0.050) 3.958 (0.217)

REMEDIS 0.297 (0.035) 5.364 (0.236)

CXRF  0.308 (0.036) 4.744 (0.178)

Random sampling ~ 0.317 (0.047) 4.416 (0.514)

Naive  0.369 (0.039) 3.930 (0.190)

60 samples ImageNet 0.293 (0.033) 5.292 (0.216)
Clustering TXRV ~ 0.312 (0.034) 5.087 (0.230)

REMEDIS 0.283 (0.042) 5.179 (0.169)

CXRF  0.315 (0.035) 4.558 (0.199)

Random sampling  0.337 (0.051) 4.390 (0.452)

Naive 0.346 (0.035) 4.452 (0.162)

S0 samples ImageNet 0.320 (0.039) 4.372 (0.195)

Clustering TXRV  0.349 (0.031) 5.320 (0.158)
REMEDIS 0.372 (0.041) 3.841 (0.211)
OXRF  0.282 (0.039) 5.063 (0.214)
Random sampling  0.356 (0.052) 4.351 (0.530)
Naive  0.400 (0.044) 4.022 (0.176)

(0.042)

(0.039)

ImageNet 0.389 (0.042) 4.155 (0.172)
Clustering TXRV ~ 0.360 (0.039) 3.970 (0.168)
REMEDIS 0.317 (0.032) 5.068 (0.260)

CXRF 0.391 (0.039) 4.293 (0.204)

100 samples

samples and contributed to models with superior performance than the baseline
methods in both stages of initialization and subsequent learning [30].

Performance divergence was observed among the three foundation model-
based clustering methods, with REMEDIS-based clustering exhibiting compara-
tively lower performance. In contrast to the other two models specialized in chest
radiographs, REMEDIS was designed as a versatile model capable of handling
five medical imaging modalities, exemplifying a phenomenon where a general-
ist model may not achieve comparable performance to a specialist in healthcare.
Moreover, ImageNet-based embeddings showed comparable performance to three
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foundation model-based clustering methods in the classification task while rela-
tively bad performance in the segmentation task, indicating the ImageNet-based
embeddings are capable of selecting initial samples for simple classification rather
than complex segmentation. Besides, Table[I]depicts multiple performance drops
with increased budgets in cold-start active learning initialization, and Table
and [@] shows several similar drops when the model was updated with higher bud-
gets in subsequent active learning. We suggested that the fluctuation of evalu-
ation metrics could stem from three potential sources: the model convergence
affected by SGD, the model optima selected by the limited validation samples,
and the evaluation inconsistency due to the small test dataset. To alleviate the
instability problem, a larger dataset and multiple simulations are necessary to
stabilize parameter estimation and substantiate the positive correlation between
model performance and annotation budgets [38/4].

6 Conclusion

Based on low-dimensional embeddings generated by foundation models, cluster-
ing selected more informative samples for initializing cold-start active learning,
leading to models showcasing enhanced performance than the baselines. We hope
this study provides an effective paradigm for future cold-start active learning.
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